Заправляй, но проверяй

Совместимость смазочных материалов разных сортов

Многие ли из операторов и владельцев тяжелой специальной техники смогут грамотно ответить на следующие вопросы. Если несколько марок или сортов смазочных материалов пригодны для применения в данной конкретной машине и системе, можно ли на этом основании предположить, что они будут совместимы друг с другом? Если они не совместимы, насколько могут быть опасными последствия, если их все же смешают по ошибке? Возрастет ли опасность несовместимости, если при замене масла вы переходите на другой бренд?

С этими и другими сложными вопросами совместимости смазочных материалов мы постараемся разобраться в данной статье.

Совместимость пластичных смазок

Назначение пластичной смазки прежде всего разделять поверхности трущихся деталей в тех случаях, когда по каким-либо причинам невозможно использование жидких смазочных материалов. Пластичная смазка также выполняет роль уплотнения, препятствующего проникновению в полости загрязнений.

Как работают пластичные смазки

Особенности составов смазочных материалов часто являются причиной несовместимости даже между двумя марками продуктов одного типа.

В состав любой пластичной смазки входят три ингредиента: базовое масло, загуститель (иногда его называют гелеобразующим агентом или наполнителем) и присадки. Обычно базовое масло составляет 80–90%, загуститель 5–30% и присадки 2–5% от общего состава пластичной смазки.

Как говорится в энциклопедиях: «пластичные смазки – это полутвердые смазочные материалы, обладающие высокой начальной вязкостью, но при воздействии усилия сдвига вязкость пластичной смазки уменьшается, и создается эффект смазывания, подобный действию жидкого масла, у которого вязкость примерно равна вязкости базового масла пластичной смазки». Если объяснять упрощенно: представьте, что загуститель, как губка, удерживает базовое масло с присадками. Когда на слой смазки между трущимися поверхностями начинает воздействовать усилие сдвига (давление и скорость деформации материала), загуститель, как сжимающаяся губка, высвобождает часть масла с присадками для выполнения функций смазывания – создания масляной пленки между трущимися поверхностями. Когда воздействие усилия сдвига прекращается, загуститель вновь связывает жидкое масло.

Более точно технически поведение пластичной смазки можно описать так: ее вязкость уменьшается под действием усилия сдвига при достижении предела прочности на сдвиг и восстанавливается при уменьшении усилия сдвига ниже предельного уровня. Это свойство называется «тиксотропностью» (это способность субстанции уменьшать вязкость (разжижаться) от механического воздействия и увеличивать вязкость (сгущаться) в состоянии покоя).

Базовые масла

Базовые масла имеют классификацию по API, состоящую из пяти групп. Первые три группы (I, II и III) – это минеральные масла, полученные из нефти. От технологии, по которой производится масло, зависят его свойства. Технология получения масел группы I – самая простая и дешевая, но и характеристики этих масел невысоки: например, они быстро окисляются. Масла группы II подвергаются гидроочистке от нежелательных молекул, в результате они стоят дороже, но обладают более совершенными свойствами. Масла III группы получаются путем гидрокрекинга и имеют довольно высокое качество, такое, что при лабораторных исследованиях их трудно отличить от масел IV группы – синтетических полиальфаолефинов (ПАО), искусственно синтезированных из природного газа. В V группу включены все остальные масла.

Базовые масла выбираются по качеству и вязкости в зависимости от назначения и условий работы, для которых предназначается пластичная смазка. Например, синтетические масла лучше минеральных работают при экстремальных температурах, обладают высокой стабильностью величины вязкости в широком диапазоне температур. Однако одно лишь базовое масло не способно выполнить все сложные задачи по смазке и должно быть дополнено загустителями и присадками.

Загустители

Почему существует много разновидностей загустителей? Потому что разные загустители придают пластичной смазке различные свойства. Кальциевые мыла, например, обеспечивают прекрасную водостойкость (способность противостоять размыву водой), такая смазка не испортится при работе в условиях, когда она постоянно подвергается воздействию воды. Однако температура каплепадения смазок на основе кальциевых мыл (т. е. температура плавления) весьма невысока. Обычно стараются обеспечить смазке такую теплостойкость, чтобы она в диапазоне своих рабочих температур имела запас в 40–55 °С до температуры плавления. Литиевое комплексное мыло придает смазке теплостойкость, однако сопротивляемость воздействию воды у такой смазки хоть и неплохая, но не превосходная.

Из неметаллических загустителей чаще всего используется полимочевина. Этим термином, как именем нарицательным, называют все неметаллические загустители. Такие вещества используют, например, в смазках, которые должны обладать высокими антиокислительными свойствами (сопротивление старению) и иметь длительный срок службы. От состава и содержания загустителей во многом зависит стоимость пластичной смазки. 

Консистенция и прокачиваемость

Тип и доля содержания загустителя в общем объеме смазки определяют также ее «консистенцию» (механическую стабильность), т. е. способность выдерживать деформации под действием усилия сдвига, оставаться на своем месте, а не выдавливаться из полости.

«Национальный институт пластичных смазок» (NLGI, США) разработал классификацию из 9 классов «консистенции» смазки от 000 до 6, которая принята в качестве международной и соответствует европейскому стандарту на смазки DIN 51 818. Чем выше класс консистенции, тем тверже смазка. Класс определяется по глубине проникновения эталонного конуса в смазку. В строительной технике обычно используются пластичные смазки классов консистенции 0, 1 и 2. В России действует ГОСТ-5346, определяющий характеристику «пенетрация при 25 °С», также являющуюся мерой консистенции пластичной смазки.

Еще одна характеристика пластичных смазок, зависящая от вязкости базового масла и свойств загустителя, – это «прокачиваемость» (динамическая вязкость), т. е. способность пластичной смазки течь по каналам централизованной автоматической системы смазки при различных температурах, диаметре и длине каналов. Прокачиваемость измеряется с помощью такого прибора, как, например, вентметр Линкольна.

Почему бывают несовместимы присадки

В общем случае присадки выполняют три основных функции: усиление полезных свойств и нейтрализация нежелательных свойств базового масла, а также создание новых свойств, которых у базового масла не было. Пакет присадок специально подбирается для определенного базового масла, за счет этого базовое масло приобретает набор свойств, необходимых для выполнения различных задач по смазке. Даже если два смазочных материала имеют базовые масла, которые совместимы, присадки, содержащиеся в них, могут быть несовместимыми. Если вы переходите с одной марки смазочного материала на смазку такого же типа от другого производителя, они могут быть несовместимыми из-за разного состава пакетов присадок. В основном несовместимость присадок выражается в том, что они вступают в химические реакции между собой и в результате разрушаются и нейтрализуются. Это может привести к потере либо к изменению свойств, которые придавали маслу присадки, а также к образованию нежелательных побочных продуктов реакции. 

Таблицы совместимости

Хотим предостеречь читателей: не всем таблицам совместимости пластичных смазок можно верить, не всегда в таких таблицах учитываются такие важные характеристики смазочных материалов, как консистенция и температура каплепадения. При этом в Интернете можно найти множество таблиц совместимости, данные в которых будут различаться.

Приведенные в таблицах оценки совместимости пластичных смазок: «полностью совместимые», «частично совместимые/ сомнительные/ необходимы испытания» и «полностью несовместимые» – обычно основываются на свойствах загустителей: могут ли два загустителя работать совместно и до какой степени это допустимо. А ведь возможна также несовместимость присадок или в редких случаях несовместимость базовых масел. В таблицах совместимости не содержится оценок воздействия смешивания пластичных смазок на рабочие характеристики, такие как способность смешанного продукта выдерживать экстремально высокое давление или сопротивляться вымыванию водой. Также в таблицах не рассматривается возможное воздействие смешанного продукта на уплотнения или цветные металлы.

Некоторые осторожные производители смазочных материалов делают к своим таблицам совместимости следующие примечания. «Данные в таблице представляют собой общую оценку совместимости пластичных смазок на основе совместимости загустителей. В таблице не учтена возможная несовместимость присадок разных марок смазочных материалов и другие индивидуальные особенности их составов. Для специальных сортов пластичных смазок, имеющих особый состав и изготовленных по особым технологиям, заключение о совместимости может отличаться от общего, указанного в данной таблице. Компания-производитель рекомендует при проведении техобслуживания всегда тщательно удалять и вычищать остатки старой смазки, прежде чем заправить пластичную смазку другой марки или сорта. Компания-производитель и ее дочерние фирмы не несут ответственности за информацию, представленную в данной таблице».

[b]Таблица совместимости присадок и других компонентов смазочных материалов:[/b] С – совместимы; В – «на грани»; I – не совместимы

В заключение еще раз подчеркнем: когда смешивают две пластичные смазки разного состава, несмотря ни на какие таблицы совместимости, никогда нельзя быть уверенным на 100% в положительном результате: смесь может обеспечить, а может и не обеспечить смазку данного узла.

Признаки несовместимости пластичных смазок

По каким же признакам можно сразу, не проводя лабораторного анализа, понять, что смешанные пластичные смазки несовместимы? Типичным проявлением несовместимости пластичных смазок является, например, сильное разжижение смазки, которое может еще и усилиться при повышении температуры или усилий сдвига, либо, наоборот, затвердевание смазки вследствие выделения базовых масел из смешанного продукта при повышенных температурах.

Лабораторные анализы на совместимость пластичных смазок

В специализированных химических лабораториях при проверке пластичных смазок на совместимость обычно делают анализы на величину консистенции по NLGI и температуру каплепадения: сначала каждой из исходных пластичных смазок, затем для смеси смазок в соотношении 90/ 10, причем в обоих вариантах, и для смеси в составе 50/ 50. Если смесь по сравнению с исходными смазками приобретает более низкий класс консистенции, такие смазки несовместимы. То же относится и к случаю, когда температура каплепадения смеси оказывается заметно ниже допустимого предела значений для обеих исходных смазок. Если же изменения консистенции и температуры каплепадения остаются в пределах допустимых отклонений от значений показателей исходных смазок, их можно считать «частично совместимыми/ сомнительными/ необходимы испытания». Также при оценке на совместимость новой смазки и старой, уже работающей в узле, перемешивают пробы новой и старой, взятой из узла, смазок. Смысл этого анализа в том, что в ходе эксплуатации в смазку могут попасть загрязнения, которые отрицательно повлияют на совместимость смазок, либо условия эксплуатации могут сделать смесь несовместимой при определенных специфических условиях работы.

Замена нескольких пластичных смазок одним аналогом

Если машинный парк состоит из разнообразной техники, организация правильного порядка использования пластичных смазок в таких условиях является очень сложной задачей. И стремление точно выполнить все рекомендации производителей техники может привести к тому, что на складе компании придется хранить огромное число емкостей со смазками различных сортов.

Как в такой ситуации избежать ошибок при заправке смазочных материалов? Некоторые специалисты предлагают использовать заправочные пистолеты и пресс-масленки, окрашенные в разные цвета в зависимости от марки и типа смазки. Другие предлагают использовать заправочные штуцеры и пресс-масленки разного типа, чтобы к ним подходили только определенные заправочные пистолеты.

Но есть еще один более экономичный вариант: сократить число используемых смазок, заменив несколько совместимых смазок одной, не ухудшая при этом качество смазывания узлов машин. Реализацию этого решения усложняет отсутствие рекомендаций от некоторых дилеров, продающих технику, которые, как ни удивительно, не разбираются в смазочных материалах для продаваемой и обслуживаемой ими техники. Производители техники зачастую предоставляют мало информации о совместимости и технических характеристиках пластичных смазок.

Для тех, кто столкнулся с этой задачей, мы можем порекомендовать обратиться к специалистам по смазочным материалам, которые хорошо разбираются в составах, свойствах и применении пластичных смазок. Принимая решение о замене нескольких марок пластичных смазок единым аналогом, необходимо собрать как можно больше информации по этому вопросу: запросить специ­фикации данных смазочных материалов у нефтеперерабатывающей компании-производителя и сопоставить требования к характеристикам смазочных материалов, которые предъявляют разные машины, находящиеся в составе данного парка.

Совместимость синтетических масел

«Синтетические» – это общее наименование смазочных материалов, в составе которых имеются синтетические вещества. Синтетические смазочные материалы могут иметь совершенно разные эксплуатационные качества и быть совершенно несовместимыми. 

Отличия синтетических смазочных материалов от минеральных

Синтетические смазочные материалы в отличие от обычных минеральных масел не производятся из нефти. Они синтезируются из природного газа и других материалов. Например, полиальфаолефины (ПАО), наиболее распространенные синтетические базовые масла, синтезируются путем полимеризации молекул этилена и децена (который получается главным образом из природного газа). В отличие от минеральных масел, в составе которых могут быть миллионы различных молекул и молекулярных структур, размеры и формы молекул синтетического масла одного сорта намного однороднее и стабильнее. За счет этого и свойства у смазочного материала бывают более стабильными, а жизненный цикл более предсказуем.

Некоторая путаница возникла недавно относительно использования термина «синтетические смазочные материалы». Несколько нефтехимических компаний разработали технологический процесс, включающий в себя преобразование путем каталитической реакции основных составляющих сырой нефти при высоком давлении и температуре в присутствии водорода (гидрокрекинг) в минеральные смазочные материалы очень высокого качества. Эти смазочные материалы, относящиеся к группе III по классификации API, настолько хорошо очищены, что их характеристики почти соответствуют синтетическим смазочным материалам группы IV. В США суд признал правомерным называть эти смазочные вещества «синтетическими», когда производители настоящих синтетических смазочных материалов группы IV подали в суд за «недостоверную рекламу» на производителей смазочных материалов группы III. Даже несмотря на то, что базовые масла группы III изготавливаются из сырой нефти, они теперь могут легально в маркетинговых целях называться синтетическими.

О несовместимости и замене

На современном рынке предлагаются сотни синтетических смазочных материалов различного назначения. Как уже говорилось, многие из этих смазочных материалов несовместимы друг с другом или со смазками на минеральной основе, и исключений из этого «правила» немного: например, полиальфаолефиновые масла (ПАО) и масла из сложных эфиров.

Некоторые из синтетических смазочных материалов также несовместимы с красками и материалами уплотнений современных машин и оборудования, с материалами, из которых изготавливаются фрикционные накладки сцеплений и тормозных колодок, а также гидравлических рукавов.

Поэтому прежде чем принять решение о замене какого-либо минерального смазочного материала на синтетический, следует рассмотреть весь предлагаемый на рынке ассортимент, проанализировать состав и качества каждого продукта и сравнить с современными высококачественными минеральными смазочными материалами. Очень возможно, что минеральный смазочный материал более высокого класса качества, чем тот, что используется в машине, может решить проблемы работы, в то же время устраняя необходимость использовать более дорогое синтетическое масло.

Если все же принято решение о переходе со смазочного материала на базе минерального масла на масло на синтетической основе, следует тщательно промыть систему, чтобы удалить все остатки прежнего масла и исключить проблемы, связанные с несовместимостью масел.

Примеры из практики

Читатель задал такой вопрос: «Мы подозреваем, что небольшое количество гидравлического масла на основе эфира фосфатной кислоты, предназначенного для системы электрогидравлического управления погрузчика, было по ошибке налито в емкость с синтетическим маслом на основе ПАО. Как можно проверить, попало ли гидравлическое масло в синтетическое»?

Для смазочных материалов, которые имеют совершенно разные по химическому составу базовые масла, самым простым способом обычно является анализ методом инфракрасной спектроскопии с преобразованием Фурье (FTIR-спектроскопия, ИК-спектроскопия). Анализ инфракрасных спектров позволяет обнаружить функциональные группы (структурные фрагменты органических молекул, определяющие их химические свойства) в пробе масла, проще говоря, определить вещества, входящие в состав данного смазочного материала, а также такие загрязнения, как вода, топливо и этиленгликоль (охлаждающая жидкость).

Следует рассмотреть анализы пробы чистого масла на основе ПАО, чистого масла на основе эфира фосфатной кислоты и предполагаемого смешанного продукта. Выявить свидетельство загрязнения будет несложно: если в синтетическое масло на основе ПАО попал смазочный материал на основе эфира фосфатной кислоты, на спектрограмме будет виден «всплеск» в определенном диапазоне частот волн. Поскольку в чистом масле на основе ПАО не может быть эфира фосфатной кислоты, значит, следы этого вещества могли попасть в масло только в результате загрязнения. Такой анализ способны выполнить большинство специализированных промышленных лабораторий.

Трансмиссионное масло и ATF

А вот еще ситуация: «Трансмиссионное масло класса 80W-90 залили в емкость, в которой оставалось примерно 5–10 л масла для автоматических трансмиссий (ATF). Насколько опасно использовать образовавшуюся смесь? Привела ли в негодность трансмиссионное масло эта добавка в его состав небольшого количества масла ATF, или трансмиссионное масло все же можно использовать в главных, бортовых передачах и дифференциалах, в которых обычно используется масло 80W-90»?

Чтобы ответить на эти вопросы, необходимо проанализировать все факторы, от которых зависит несовместимость масел. Конечно, лучше избегать смешивания смазочных материалов. Однако, если небольшое количество смазочного материала будет добавлено в большой объем масла, близкого по сорту и вязкости, это может быть не так уж катастрофично. Поэтому нужно знать объемы каждого из попавших в смесь масел, типы их базовых масел и присадок и какой стала вязкость получившейся смеси. Объемы смазочных материалов, вошедших в смесь, являются определяющим фактором. Например, если смешивают 1 л масла ATF с 300 л трансмиссионного масла той же группы минеральных масел, заметить ухудшение свойств трансмиссионного масла будет сложно. С другой стороны, если смесь состоит из смазочных материалов в соотношении 50/ 50, вряд ли такой продукт будет пригоден для использования.

К какому типу относятся базовые масла смешанных смазочных материалов (синтетические или минеральные) – тоже очень важно. Минеральные масла групп I, II, III и полиальфаолефины (ПАО) очень близки по химическому составу, и при смешивании двух таких масел не должно возникнуть проблем с совместимостью. И напротив, в большинстве случаев полиалкиленгликоли (ПАГ, синтетические полимерные масла) нельзя смешивать ни с ПАО, ни с минеральными маслами.

В моторных маслах и ATF содержится большое количество присадок, а в гидравлических и турбинных маслах их концентрация невысока. Учтите, что некоторые присадки, например на основе фосфора, могут оказывать разрушительное действие на детали из бронзы и меди, из которых бывают выполнены шестерни зубчатых передач.

Вязкость – еще одна важнейшая характеристика смазочного материала, и любые изменения вязкости смазочного материала могут оказать разрушительное влияние на технику. Если вязкость увеличится, это может вызвать перегрев машины (возрастет жидкостное трение в смазочном материале). Если вязкость уменьшится, смазочный материал не сможет образовывать устойчивую пленку достаточной толщины, чтобы защищать от трения детали машины, в результате также может возникнуть перегрев деталей из-за трения металла по металлу.

 

Производители смазочных материалов могут создавать масла с аналогичными характеристиками из совершенно разных компонентов. Поэтому никогда не следует сразу считать два смазочных материала полностью совместимыми, даже если они оба рекомендованы для применения в данной конкретной системе или машине. Даже если они считаются совместимыми, следует их тщательно изучить, прежде чем смешивать. Особую осторожность следует проявлять, рассматривая смазочные материалы на базе масел разного типа. При подборе нового масла для данной машины рекомендуется проверять на совместимость не только прежнее и новое масло. Следует учитывать, что новое масло может быть несовместимым с некоторыми материалами, с которыми оно соприкасается в процессе работы, например, с уплотнениями и металлами. Если вы не уверены в совместимости смазочных материалов, тщательно промойте систему, чтобы удалить из нее все остатки старого масла.

И помните: лучше отказаться от использования сомнительного смазочного материала, чем рисковать исправностью всей машины.