Автоматические противогололедные системы
Система предупреждения обледенения дорожных покрытий автоматическим распределением жидких реагентов

Н. Борисюк, к.т.н., МАДИ
А. Макушев, директор филиала ООО «Бошунг Кама»

Зимнее содержание автомобильных дорог – это высокозатратный технологический процесс, позволяющий поддерживать требуемые качества дороги. Особенно необходимо поддерживать эти качества на сложных участках дорог, таких как кривые малых радиусов, крутые подъемы, мосты, путепроводы. На этих участках должна проводиться борьба не с ликвидацией обледенения, а предупреждением образования скользкости.

В настоящее время довольно широкое распространение в отечественной и зарубежной практике получила технология автоматического распределения реагентов. Суть технологии заключается в своевременном распределении раствора химического реагента для предупреждения обледенения покрытия.

В целом это предполагает систему, состоящую из ряда модулей, которая включает в себя:

  • придорожную метеостанцию с датчиками, дающими весь необходимый спектр информации о возможном обледенении покрытия;
  • насосную станцию для подачи раствора реагента на участки распределения;
  • магистральные трубопроводы и оборудование для подачи и выплеска реагента;
  • аппаратуру для подачи прогнозирующей команды на распределение противогололедных реагентов для предупреждения обледенения покрытия.

Особый интерес представляют дорожные датчики, дающие информацию о состоянии покрытия, которые могут искусственно охлаждать до замерзания и нагревать до расплавления субстанцию на поверхности покрытия – то есть если на поверхности покрытия ранее были распределены химические реагенты, то точка замерзания раствора может быть ниже нуля.

Датчик покрытия ARCTIS
 
Технические характеристики датчика ARCTIS Active sensor for freesing point detection компании Boschung Mecatronic
Диапазон рабочих температур –40...+70 °С
Потребляемый ток (элемент Пельтье) 3,9 А (при цикле измерения)
Температурная граница цикла измерения +4 °С
Максимальное время цикла охлаждения 120 с
Частота измерений 6 циклов/час
Параметры датчика:  
размеры ∅120х41,5 мм
вес 1,2 кг (без кабеля)
Защитный корпус:  
размеры 180х140х43 мм

Одним из самых эффективных элементов данной системы является дорожный датчик швейцарской компании Boschung Mecatronic AG. Его работа заключается в замораживании и оттаивании жидкой субстанции на поверхности гидрофильного датчика и расположении терморезистора на поверхности датчика. Температура поверхности покрытия измеряется с помощью термопар.

Физический процесс работы датчика основан на работе элементов Пельтье.

Элемент Пельтье – термоэлектрический преобразователь, который основан на выделении или поглощении теплоты в месте контакта двух разнородных металлов при прохождении через контакт электрического тока.

Работа дорожного датчика заключается в подаче сигнала об обледенении покрытия.

Дорожный датчик в прогнозном режиме определяет температуру замерзания жидкости на поверхности датчика (жидкость на поверхности датчика охлаждается до температуры замерзания). Периодичность данного цикла может составлять 6 циклов в час, что вполне обеспечивает надежность предупреждения обледенения покрытия. Датчик обеспечивает снижение температуры относительно температуры покрытия до 15 °С.

Установка упреждающего оповещения об образовании обледенения необходимая, но только первая часть всей системы предупреждения скользкости дорожных покрытий.

Далее Boschung Mecatronic AG предусматривает автоматическую установку TMS-распределения противогололедного реагента, что позволяет на основе полученной информации за кратчайшее время перед образованием скользкости распределить противогололедные реагенты.

В зависимости от видов зимней скользкости установка TMS распределяет противогололедный реагент:

  • при выпадении дождя при отрицательной температуре (гололед);
  • при понижении температуры при влажном покрытии, даже при наличии раствора реагента, если его концентрация недостаточна (гололедица);
  • при понижении температуры, когда происходит кристаллизация влаги из воздуха (иней). При фиксации образования инея производится распределение реагента;
  • для предупреждения наката при выпадении снега, когда распределение реагента делает снег (снежную массу) подвижной и сыпучей, что способствует механической уборке.

Датчик дорожного покрытия BOSO проводит измерение:

  • толщины водяной пленки на поверхности датчика;
  • температуры дорожного покрытия;
  • температуры замерзания раствора реагента с охлаждением поверхности на 2 °С ниже температуры покрытия (датчик содержит активный элемент, позволяющий охлаждать непосредственно поверхность на 2 °С ниже температуры покрытия);
  • определение состояния покрытия: сухое, влажное, мокрое, гололед, изморозь.
Датчик покрытия BOSO

Разработки антигололедных систем компании Boschung Mecatronic AG включают подстанцию с насосной системой, емкость для жидкого реагента и компьютерную систему управления. Компьютерная система управления, обрабатывая и анализируя информацию от метеосистемы и дорожных датчиков, дает команду на подачу реагента к распределяющим устройствам. Автоматическая система распределения жидких реагентов состоит из прогнозируемой и распределяющей частей. Прогнозирующая часть обеспечивает оповещение об образовании гололеда (GFS), распределяющая часть непосредственно по команде обеспечивает выплеск растворов противогололедных реагентов на проезжую часть. Основное назначение системы – предупреждение об образовании гололеда. Принципиальная схема показана на рис. 1.

Системы предупреждения об образовании гололеда и разбрызгивания образуют единую систему и работают синхронно.

<b>Рис. 1. Принципиальная схема системы выплеска жидкого реагента на проезжую часть (пунктиры – электрические, сплошные – гидравлические соединения):</b> 1 – емкость для раствора;  2 – насос; 3 – управление системой; 4 – блок управления форсунками; 5 – разбрызгивающие форсунки; 6 – регистрация давления и расхода

Необходимое получение информации о фактическом состоянии покрытия и прогнозе его состояния дают автоматические дорожные метеостанции.

На рис. 2 и 3 в упрощенном виде, схематически показаны блок-схемы и конструкция датчика.

Для нагрева жидкостной пленки также применяется элемент Пельтье, как уже отмечалось, он может осуществлять как нагрев, так и охлаждение жидкостной пленки.

<b>Рис. 2. Блок-схема устройства для определения толщины водяной пленки</b>

На рис. 2 элемент 1 Пельтье показан схематически в виде блока. Этот элемент электрически запитывается от схемы 2 питания, которая размещена внутри схемы 3 управления и обработки данных. Схема 2 питания включает в себя электрический источник с постоянным током i, или источник тока с непостоянной, но известной характеристикой изменения тока. Температуры Тс и Тн – это температуры холодной и соответственно теплой стороны элемента Пельтье. При реверсивном направлении тока элемент может использоваться также для охлаждения жидкостной пленки, тогда меняются холодная и теплая стороны.

<b>Рис. 3. Схема конструкции датчика определения толщины водяной пленки</b>

На рис. 3 показан элемент Пельтье 1, расположенный между первым теплопроводным телом 10 из меди и вторым теплопроводным телом 11 из алюминия. Вместе с корпусом 12, выполненным из полупроводникового материала, элементы 1, 10 и 11 образуют устройство 13, которое в форме поверхностного зонда может встраиваться под какую-либо поверхность, на которой может находиться водяная пленка. В данном примере для этого выбрано покрытие 14 с различными схематически показанными слоями, в которое встроен зонд 13, так что поверхность 18 зонда 13 оказывается в связке с поверхностью 19 дорожного покрытия 14.

При этом корпус 10 зонда уложен соответственно в дорожное покрытие, чтобы отводить тепло, применяемое для нагрева водяной пленки 17. Расположенное над элементом 1 Пельтье теплопроводное тело 11 своей поверхностью 15 образует поверхность нагрева для водяной пленки.

В зонде 13 могут быть предусмотрены электроды 4, с помощью которых за счет измерения проводимости может быть установлено наличие водяной пленки.

Для этой цели электроды 4 соединены с соответствующим измерительным устройством 6, которое в свою очередь соединено с элементом 8 управления и обработки данных, в частности с микропроцессором схемы 3 управления и обработки данных. Такого типа электроды могут быть предусмотрены также в других местах покрытия, а не только в зонде 13. Кроме того, в зонде размещен также измерительный резистор 5 температуры, контактирующий с водяной пленкой 17, с помощью которого может быть измерена температура жидкостной пленки. Этот измерительный резистор, как правило, Pt 100 – элемент или термоэлемент, через соответствующую измерительную схему 7 также соединен с микропроцессором 8.

Поверхность 18 датчика имеет углубление (0,5 мм), которое образовано поверхностью 15 тела 11 и образует окружность диаметром А. Переход этой поверхности 15 к поверхности датчика 18 скошен под углом 45°. При нагреве водяной пленки 17 нагревательным устройством в грубом приближении можно исходить из того, что нагрев водяной пленки осуществляется в круговой зоне с диаметром В.

Зона углубления в поверхности зонда 13 имеет глубину lо–0,5 мм. Диаметр А составляет 14 мм, а диаметр В – 20 мм.

Толщина водяной пленки не указывается точным количественным значением, а классифицируется в виде диапазона значений наличия водяной пленки, в котором находится фактическое значение толщины водяной пленки.

<b>Рис. 4. Конструкция тарелки распределения растворов реагента заданного объема</b>

Как правило, вполне достаточно указать толщину водяной пленки через сигнал датчика, что позволяет разделить значения толщины водяной пленки по разным значениям от 0 до 1 мм.

Данная технология обработки данных дает классификацию по значениям толщины водяной пленки, а блоком обработки данных выдается соответствующий сигнал. Таким образом, единственным датчиком на проезжей части дороги может быть сформирован сигнал предупреждения как о гололеде, так и об аквапланировании.

Если на датчике образовался лед, то последний для определения толщины ледяной пленки должен быть расплавлен. Затем он может быть снова охлажден для определения точки замерзания. Кроме того, так можно определить точку плавления при таянии, благодаря чему будет известна также температура точки замерзания.

Системы предупреждения образования гололеда и объема выплеска жидких реагентов образуют единую систему и работают синхронно.

В качестве распределяющих устройств применяются:

  • разбрызгивающие тарелки (рис. 4, 5);
  • разбрызгивающие головки (рис. 6 );
  • форсунки-микрофаст (рис. 7).

Разбрызгивающая тарелка может иметь от 4 до 8 сопел. Сопла монтируются в блоке, и угол атаки регулируется до 15°, как в вертикальной, так и горизонтальной плоскости. Сопла под давлением 12 бар выбрасывают на поверхность покрытия раствор реагента заданного объема с дальностью выброса не менее 10 м.

Разбрызгивающие тарелки в разных системах располагаются на расстоянии от 7 до 20 м, как линейно, так и в шахматном порядке, и после выплеска распределение раствора происходит под движением транспортных средств, а также по продольному и поперечному уклону. Процесс выплеска длится 2–3 с, за это время распределяется 2–2,5 л раствора (около 1 л/с). На рис. 4 показана разбрызгивающая тарелка, расположенная на одном уровне с покрытием.

<b>Рис. 5. Разбрызгивающая тарелка: а) вид сверху;</b> <b>Рис. 5. Разбрызгивающая тарелка: б) выплеск реагента;</b>

В качестве реагента в зарубежной практике применяется раствор NaCl – 22,5% (ФРГ) и раствор CaCL2 – 32–25%. К недостаткам раствора CaCL2 относят то, что при его высыхании на покрытии остается тонкий слой хлорида кальция, который в силу гигроскопичности реагента притягивает влагу из воздуха, и концентрированный раствор всегда долго находится на поверхности покрытия. Его наличие приводит к эффекту смазки и соответственно снижению сцепных качеств покрытия.

При высыхании натриевого раствора на поверхности покрытия происходит кристаллизация NaCL, и покрытие становится сухим. В отечественной практике применяются кальциевые реагенты, поскольку эффективность использования натриевых растворов целесообразна до –10 °С, что не соответствует отечественному диапазону температур. Наличие дорожно-метеорологической станции (АДМС), синхронно работающей с автоматической системой распределения, позволяет обеспечить упреждающее нанесение реагентов. Полученная АДМС информация обрабатывается компьютером, и сигнал поступает в распределительное устройство, выдавая порцию раствора.

Объем выброса регулируется временем подачи (циклом). Так, при отладке системы выброс одной форсунки за секунду составил 1230 мл. Площадь распределения раствора одной тарелки составляет до 70 м2 с плотностью обработки от 25 до 100 мл/м2 за счет цикла подачи раствора. Как правило, систему можно разместить и в местах отсутствия подвода электроэнергии, поскольку она может иметь автономное энергоснабжение, а также может работать и от стационарного питания.

Опыт устройства разбрызгивающих тарелок на проезжей части нецелесообразен, поскольку и ремонт покрытия, и текущее обслуживание самих тарелок не представляется удобным. В связи с этим широкое распространение получили разбрызгивающие головки (рис. 6).

<b>Рис. 6. Разбрызгивающая головка</b>

Головки крепятся либо в нишах, либо на стойках (опорах) инженерного обустройства дороги.

В последнее время в качестве распределяющего устройства применяется форсунка-микрофаст (рис. 7).

<b>Рис. 7. Форсунка-микрофаст</b>

При выплеске выброс реагента тонкодисперсный и практически невидим участниками движения.

Микроспрейная технология распределения позволяет за один цикл выдавать около 2 гр/м2.

Профиль форсунки-микрофаст монтируется в покрытие по кромке проезжей части на глубину 40 мм.

Линии микрофаст поставляются в бухтах длиной 100 м с диаметром труб 10/ 8 мм. Расстояние между форсунками определено в 5 м.

Рабочее давление в системе – до 16 бар, время однократного действия (разбрызгивания) – от 30 с до 3 мин.

Удельное распределение на покрытие – от 1 до 20 г/м2.

Необходимый объем выплеска реагента на 1 м2 поверхности покрытия определяется в зависимости от температуры воздуха и прогнозируемой толщины водяной пленки.

Раствор реагента на поверхности растекается по направлению суммированного уклона, образованного по величинам продольного и поперечного уклонов.

Системы автоматического распределения не могут заменить технологию зимнего содержания во всех аспектах, но эффективно ее дополняют.

Общеэкономическая выгода от применения противогололедной системы складывается из производственно-экономической (сэкономленные затраты на персонал, транспортные расходы и потребительские расходы уполномоченной осуществлять зимнее содержание службы эксплуатации) и народнохозяйственной выгоды. Определяющим для показателя рентабельности является народнохозяйственная составляющая в оценке выгоды. Главным образом она заключается в экономии расходов вследствие влияния противогололедной установки на следующие сферы: безопасность движения, движение транспорта, защита окружающей среды и участники движения.

В ФРГ с 1982 г. было установлено 16 противогололедных установок, в которых применялся 32%-ный CaCl2 и 22,5%-ный NaCl.

В России противогололедные системы компании Boschung Mecatronic AG получили широкое распространение в Московском регионе, что обусловлено высокой интенсивностью движения, сложными конструкциями развязок, эстакад и путепроводов, а также влиянием сложных погодных условий на движение в мегаполисе. Данные системы установлены на МКАД (Калужская, Горьковская, Ленинградская развязки, Бесединский путепровод, съезд на внешнюю сторону МКАД со Сколковского шоссе, а также первая в России система установлена в 1998 г. на 30-м км МКАД). В городской черте противогололедные системы Boschung Mecatronic AG установлены на Кутузовской транспортной развязке ТТК и в Ходынском тоннеле Ленинградского проспекта.

Заказчики и эксплуатирующие организации отмечают высокую эффективность данных систем, позволяющих заблаговременно предупредить образование зимней скользкости, а также существенно снизить затраты на зимнее содержание данных участков.

Запретить нельзя, нормировать!

13 февраля в Государственной думе РФ состоялся круглый стол «О проблемах обеспечения экологической безопасности при использовании противогололедных материалов в городах и населенных пунктах РФ». Научное сообщество высказалось за обязательную экологическую экспертизу регламентов уборки городов.

На Высшем экологическом совете Госдумы рассмотрели вопрос о проблемах обеспечения безопасности при использовании противогололедных материалов.

В настоящее время только московская технология зимней уборки соответствует всем законодательным нормам, так как имеет положительное заключение государственной экологической экспертизы. Применяемые в столице антигололедные смеси были проверены в лабораториях и признаны безопасными. В других же городах регламенты зимнего содержания дорог составляют без привлечения ученых, без учета климатических условий, а выбор реагентов оставляют на откуп подрядчикам. Те в свою очередь, экономя, зачастую применяют непроверенные антигололедные смеси, низкокачественную техническую соль и песок.

«Использовать песок в городах – это преступление! – заявил депутат Государственной думы, эксперт в области экологической и промышленной безопасности Максим Шингаркин. – Песок, находясь на дороге в течение зимы, перемалывается в мелкодисперсную пыль. Весной жители вдыхают эту пыль вместе с выхлопными газами, осевшими на частицах песка, вместе с тяжелыми металлами, вместе с продуктами жизнедеятельности животных… И эта пыль является самым страшным аллергеном и ядом».

«В городах должны применяться наиболее эффективные противогололедные материалы, – добавила Софья Бабкина, эксперт Всероссийского общества охраны природы. – Те, которые имеют наименьший расход». По сравнению с пескосоляной смесью современных реагентов необходимо в 6–8 раз меньше, что значительно сокращает воздействие на окружающую среду и человека. Однако все используемые смеси должны обязательно проходить проверку и иметь положительное заключение государственной экологической экспертизы, как и сама технология зимней уборки.

«Новые противогололедные материалы появляются, но даже самый хороший реагент можно испортить, не соблюдая технологию и нормы применения, – отметил Юрий Орлов, кандидат химических наук. – Необходимо ужесточать контроль за нормой расхода, улучшать метеопрогнозирование и, конечно, использовать только проверенные реагенты». Однако ставить вопрос: или противогололедные материалы, или переломанные руки-ноги, нельзя, уверены эксперты. Отказ от использования противогололедных материалов приведет к катастрофическим последствиям.