Третий глаз (Часть 2)

Приборы для поиска и диагностики подземных инженерных коммуникаций

Существует множество моделей георадаров и термоизмерительных приборов с различной точностью показаний, быстродействием, функциональными возможностями и, конечно, ценой.

Георадары (радиолокаторы)

Инфракрасный пирометр

Георадиолокация (подповерхностное радиолокационное зондирование; англ. – ground-penetrating radar, GPR) – геофизический метод, основанный на излучении импульсов электромагнитных волн и регистрации сигналов, отраженных от различных объектов зондируемой среды. Исследуемой средой может быть земля, вода, стены зданий и т. п. Волны отражаются от границ, на которых меняется плотность, влажность, диэлектрическая проницаемость, электропроводность и др. характеристики материалов. Наиболее распространенное название прибора, в котором реализуются принципы георадиолокации, – георадар.

Можно сказать, что георадар – это радиолокатор, который в отличие от классического, используется для зондирования исследуемой среды, а не воздушного пространства. Современные георадары – это либо легкие переносные приборы, либо выполненные в виде небольшой колесной тележки размером с газонокосилку.

За последние годы интерес к использованию георадаров постоянно растет. Георадар позволяет получать инженерно-геологическую информацию: определять толщину конструктивных слоев дорожной одежды, глубины промерзания в грунтовых массивах и дорожных конструкциях, содержания влаги в грунте, качество и состояние бетонных конструкций (пустоты, трещины), а также находить неметаллические подземные коммуникации, обнаруживать утечки из нефте- и водопроводов и т. д.

Пирометр

Компоненты георадара

Основные элементы георадара – импульсный генератор с передающей антенной, приемная антенна, блок регистрации, в котором производится усиление и обработка сигналов, поступающих с приемной антенны, и блок управления, который синхронизирует работу всей системы. Разъемная конструкция приемной и передающей антенн позволяет работать в режиме зондирования, когда передающая антенна неподвижна, а приемная перемещается. Передающих антенн может быть две-три, для разных диапазонов рабочей частоты и глубины проникновения сигнала, например, при частотах от 1000 до 250 МГц обеспечивается глубина проникновения от 0,25 до 15 м. Выполняя поиск подземных инженерных коммуникаций георадаром, обычно используют частоту 400 МГц для того, чтобы сканировать грунт через почву, асфальт и бетон, однако каждый раз требуется подбирать антенну, лучше всего принимающую сигнал. Георадар, например, позволяет обнаружить объекты размером 5 см на глубине до 2 м; 10–20 см – на глубине 3–5 м и 1–2 м – на глубине 20–60 м. С уменьшением частоты увеличивается глубина проникновения сигнала, но ухудшается разрешение получающегося изображения (профиля). И наоборот, чем выше будут частоты, тем меньше глубина проникновения сигнала, но лучше разрешение полученной на жидкокристаллическом экране картинки. Экран может быть цветным и обеспечивать хорошую видимость даже при прямом солнечном освещении.

Работа георадаром

Современные георадары могут быть многоканальными, оснащенными несколькими парами приемник–передатчик, за счет чего обеспечивается одновременная съемка геопрофиля с каждого канала. Использование такого прибора позволяет в несколько раз быстрее выполнять геопрофилирование дорожных покрытий. Однако такие приборы дороже и имеют бóльшие габариты и массу по сравнению с простыми одноканальными георадарами.

Выпускаются также многоканальные георадары, у которых на одну передающую антенну приходится несколько приемных. Такие приборы как бы за счет «стереоэффекта» локации сигналами с нескольких антенн обеспечивают более высокую помехоустойчивость и точность позиционирования подземных объектов. За счет возможности принимать два сигнала с различной частотой на одну антенну георадар может выявлять более широкий ряд подземных коммуникаций. На традиционно используемой частоте можно обнаруживать объекты, находящиеся на большей глубине, в то время как на второй частоте выявлять объекты, находящиеся ближе к дневной поверхности. Информация на экране прибора может представляться в двухмерном и трехмерном изображении. К их недостаткам относятся высокая стоимость и сложность электронной аппаратуры, обрабатывающей синхронизированные сигналы.

Работа георадаром

Как работают георадары

Георадар перемещается по прямой, во время движения прибор через равные промежутки времени генерирует сигналы, принимает отраженные сигналы и регистрирует время прохождения сигнала, вычисляя глубину залегания объектов. Поскольку скорость прохождения сигналов в разной среде различается, перед началом съемки может выполняться калибровка прибора. Данные локации, собранные вдоль прямых линий, позволяют получить вертикальные срезы обследуемой среды или объекта.

Перемещение оператором георадара на колесной тележке упрощает позиционирование прибора, поэтому георадары часто выпускаются на колесах наподобие газонокосилки. При вращении колес одометр подает управляющий сигнал на георадар для сбора данных через одинаковые расстояния, пройденные по поверхности, даже если скорость перемещения непостоянная. При остановке тележки георадар не посылает сигналов.

Для интерпретации результатов обследования георадаром требуются определенный опыт и знания. Однако производители этого оборудования постепенно модернизируют его: у приборов не только увеличивается объем памяти для записи результатов, но и совершенствуется электронная часть, они становятся удобнее в использовании. Отмечается, что в случае, когда исследуемый объект перекрыт сверху некими металлосодержащими предметами – стальными листами, железобетонными плитами, георадар может не «увидеть» его.

Работа георадаром

Преимущества и недостатки георадаров

Георадары обеспечивают более широкие возможности по определению местоположения подземных коммуникаций по сравнению с электромагнитным методом разведки. Они способны обнаруживать трубы и другие инженерные коммуникации из любых материалов, которые сложно или даже невозможно найти другими способами, выявляют любой твердый предмет, отличающийся по плотности от окружающего грунта, и даже очертания засыпанной траншеи, в которой уложена труба, также будут видны на экране георадара.

Для интерпретации полученной информации требуется специалист высокой квалификации и с большим опытом: вместе с нужными объектами георадары обнаруживают под землей крупные камни и другие посторонние предметы; чтобы различить их на экране, требуется навык.

Пожалуй, наибольшим недостатком георадаров является то, что они не работают в плотных грунтах. Это ограничивает возможность их использования для поиска подземных коммуникаций. Например, георадары не могут выявить керамические трубы в глинистых почвах, потому что границы между керамикой и глиной прибор не «увидит», довольно трудно различить пластиковые трубы с водой в плотном грунте – влажной глине и земле. Высокая проводимость мелкозернистых осадочных пород – глины и наносов, а также высокий уровень грунтовых вод резко снижают возможности прибора, а скальные и разнородные осадочные породы рассеивают его сигнал. Также может быть сложно определить подземные кабели, находящиеся внутри оболочки большого диаметра, в таких случаях георадары необходимо дополнить другой локационной аппаратурой.

Этот прибор часто требует больше времени для обработки данных по сравнению с простой техникой магниторазведки. Относительно высокое потребление энергии неудобно для работ в поле. К тому же стоимость георадара, как правило, выше, чем у приборов магниторазведки. Некоторые специалисты даже считают нецелесообразным использовать этот метод для ежедневной работы из-за сложности и высокой стоимости аппаратуры и зависимости результатов от условий применения.

Работа георадаром

Термоизмерительные приборы

Лазерный пирометр

Еще один метод выявления местонахождения коммуникаций и дефектов в них основывается на измерении температуры в тех случаях, когда применять другие методы затруднительно по причине высоких помех и температура кабеля, трубопровода или вытекающей через поврежденное место жидкости отличается от температуры окружающего грунта. Для измерения температур используются контактные термометры с погружными зондами, пирометры и тепловизоры.

Термометры с погружными зондами – наиболее простые приборы контактного действия. Зонд погружается в грунт в различных местах, и с экрана прибора считывается температура, точки с максимальной температурой укажут трассу трубопровода или кабеля, место утечки. Диапазон измеряемых температур, положительных и отрицательных, очень высок и перекрывает практически все потребности в строительной и коммунальной сферах.

Пирометры – приборы бесконтактного действия, измеряющие интенсивность теплового излучения: волны попадают на пирометрический датчик, в котором волновая энергия преобразуется в электрическую. Приборы имеют хорошее быстродействие, просты в использовании и сравнительно доступны по цене. Расстояние, с которого ими можно измерять, составляет обычно до 3 м. Диапазон температуры также достаточно широк для строительной и коммунальной отраслей: от +300... +400 до –50 °С.

Тепловизоры

Пирометры бывают инфракрасными и оптическими. Инфракрасные пирометры имеют серьезные недостатки: результаты измерений зависят от отражательной способности поверхности объекта, т. е. два разных объекта, имеющие одинаковую температуру, но разную поверхность, например черную или блестящую, полированную или матовую, при измерении пирометром будут показывать разные значения температуры. Также точность измерений зависит от расстояния до объекта. Однако при измерениях в стандартных ситуациях, например, температуры поверхности грунта, в глубине которого находится трубопровод, когда важнее разница температур отдельных участков поверхности, а не абсолютные значения, пирометры будут давать приемлемые результаты.

Работа тепловизором

Оптические мультиспектральные пирометры сложнее инфракрасных, поэтому они имеют меньше указанных выше недостатков, но зато они существенно дороже. Новейшие электронные пирометры имеют функции коррекции показаний и поэтому более точны, но еще дороже.

Тепловизоры – это разновидность пирометров. В этих оптико-электронных приборах спектр инфракрасного теплового излучения объекта сравнивается с эталонным, и по разнице рассчитывается температура. Это самые сложные, многофункциональные и дорогие из перечисленных выше приборов. Результаты измерений выводятся на ЖК-экран в виде очень наглядной цветной термограммы, на которой зоны с различной температурой показываются разными цветами и оттенками: от желтого до красного и синего. На более дорогих моделях цветовое изображение сопровождается цифровыми значениями температуры. Бюджетные варианты тепловизоров используются в комплексе с ноутбуком, на котором визуализируется картина измерений, выполненных прибором. Тепловизоры применяются не только для поиска кабелей, трубопроводов и утечек из них, но и для выявления неисправностей электросети: мест перегрева проводов и соединений в распределительных шкафах. Очень распространено применение тепловизоров для выявления мест утечки тепла из зданий и использования некачественных материалов. Чувствительность приборов очень высока и доходит до 0,025–0,05 °С.

Термометр с  погружным зондом

Еще раз напомним, что среди перечисленных выше термоизмерительных приборов существует множество моделей с различной точностью показаний, быстродействием, функциональными возможностями и, конечно, ценой.

Следует подчеркнуть, что результативность этого метода при локации подземных кабелей и труб значительно зависит от воздействия таких факторов, как солнечный свет или затененность. Этим прибором невозможно определить глубину залегания объекта.